An AI- and fuzzy-logic-based framework for climate change adaptation and environmental resilience in Yemen

Authors

  • Mohammed Ayedh * Amran University, Yemen.
  • Wajahat Ali Department of Statistics & Operations Research, Aligarh Muslim University, India.

https://doi.org/10.48313/uda.v2i3.80

Abstract

Yemen, a country grappling with political instability and environmental degradation, faces profound challenges due to climate change. This paper introduces a novel Artificial Intelligence (AI) and fuzzy-logic-based framework to enhance regional decision-making for climate change adaptation and environmental resilience. Recognizing the inherent uncertainty and imprecision in environmental systems, a fuzzy multi-objective goal programming model is developed to support optimal policy and resource allocation. The proposed mathematical model considers multiple conflicting objectives—such as minimizing environmental degradation, maximizing adaptation efficiency, and ensuring socio-economic sustainability—subject to resource and infrastructural constraints. Fuzzy membership functions handle ambiguous linguistic inputs such as "moderate rainfall" or "high vulnerability," while AI techniques facilitate knowledge extraction and decision rule generation. The methodology integrates fuzzy logic with goal programming, transforming vague environmental targets into structured, solvable optimization problems. AI modules support rule-based evaluation and scenario testing, enabling the system to simulate climate outcomes under different policy interventions. A numerical illustration using hypothetical yet realistic climate data demonstrates the model's capacity to deliver flexible, adaptive solutions. Results reveal that incorporating fuzzy logic improves solution robustness, especially in prioritizing actions like water conservation, afforestation, and disaster management. The findings validate the model's ability to guide sustainable decision-making in fragile environments such as Yemen. This hybrid approach bridges a significant research gap by offering a practical, adaptive, and uncertainty-tolerant tool for environmental planners and policymakers.

Keywords:

Climate change, Fuzzy logic, Artificial intelligence, Goal programming, Environmental resilience, Yemen, Multi-objective optimization

References

  1. [1] Jha, M. K., & Dev, M. (2024). Impacts of climate change. In Smart internet of things for environment and healthcare (pp. 139–159). Springer. https://doi.org/10.1007/978-3-031-70102-3_10

  2. [2] Al-Saidi, M., Roach, E. L., & Al-Saeedi, B. A. H. (2020). Conflict resilience of water and energy supply infrastructure: Insights from Yemen. Water, 12(11), 3269. https://doi.org/10.3390/w12113269

  3. [3] Mohamed, H., Elayah, M. A. A., & Schulpen, L. W. M. (2017). Yemen between the impact of the climate change and the ongoing Saudi-Yemen war: A real tragedy. Centre for Governance and Peace-building Yemen & Centre for International Development Issues Nijmegen. https://kpsrl.org/sites/kpsrl/files/2018-03/a_real_tragedy%20%285%29.pdf

  4. [4] Bressane, A., Garcia, A. J. da S., Castro, M. V. de, Xerfan, S. D., Ruas, G., & Negri, R. G. (2024). Fuzzy machine learning applications in environmental engineering: Does the ability to deal with uncertainty really matter? Sustainability, 16(11), 4525. https://doi.org/10.3390/su16114525

  5. [5] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  6. [6] Klir, G. J., & Yuan, B. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A Zadeh (Vol. 6). World Scientific. https://www.scirp.org/reference/referencespapers?referenceid=1810045

  7. [7] Li, T., Dong, Y., & Liu, Z. (2020). A review of social-ecological system resilience: Mechanism, assessment and management. Science of the total environment, 723, 138113. https://doi.org/10.1016/j.scitotenv.2020.138113

  8. [8] Sankar-Gorton, L., Lubeck-Schricker, M., Hossain, R., Iwu, C. D., Hess, J., & Levin, C. (2024). The impact of climate change on public health in humanitarian settings. Gates open res, 8(71), 71. https://gatesopenresearch.org/documents/8-71/pdf

  9. [9] World Food Programme. (2020). Annual country reports - Yemen. https://www.wfp.org/publications/annual-country-reports-yemen

  10. [10] The United Nations Development Programme. (2019). A holistic approach to addressing water resources challenges in Yemen. https://www.undp.org/sites/g/files/zskgke326/files/2022-12/Water%20Resources%20Challenges%20in%20Yemen.pdf

  11. [11] Ide, T., Brzoska, M., Donges, J. F., & Schleussner, C. F. (2020). Multi-method evidence for when and how climate-related disasters contribute to armed conflict risk. Global environmental change, 62, 102063. https://doi.org/10.1016/j.gloenvcha.2020.102063

  12. [12] Furlan, E., Dalla Pozza, P., Michetti, M., Torresan, S., Critto, A., & Marcomini, A. (2021). Development of a multi-dimensional coastal vulnerability index: Assessing vulnerability to inundation scenarios in the Italian coast. Science of the total environment, 772, 144650. https://doi.org/10.1016/j.scitotenv.2020.144650

  13. [13] Hermans, T. D. G., Šakić Trogrlić, R., van den Homberg, M. J. C., Bailon, H., Sarku, R., & Mosurska, A. (2022). Exploring the integration of local and scientific knowledge in early warning systems for disaster risk reduction: A review. Natural hazards, 114(2), 1125–1152. https://doi.org/10.1007/s11069-022-05468-8

  14. [14] Chen, L., Han, B., Wang, X., Zhao, J., Yang, W., & Yang, Z. (2023). Machine learning methods in weather and climate applications: A survey. Applied sciences, 13(21), 12019. https://doi.org/10.3390/app132112019

  15. [15] Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., ... & Rodrigo-Comino, J. (2021). Estimation of SPEI meteorological drought using machine learning algorithms. IEEE access, 9, 65503–65523. https://doi.org/10.1109/ACCESS.2021.3074305

  16. [16] En-Nagre, K., Aqnouy, M., Ouarka, A., Naqvi, S. A. A., Bouizrou, I., El Messari, J. E. S., ... & El-Askary, H. (2024). Assessment and prediction of meteorological drought using machine learning algorithms and climate data. Climate risk management, 45, 100630. https://doi.org/10.1016/j.crm.2024.100630

  17. [17] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media. https://books.google.nl/books/about/Fuzzy_Set_Theory_and_Its_Applications.html?id=HVHtCAAAQBAJ&redir_esc=y

  18. [18] Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley & Sons. https://www.wiley.com/en-us/Fuzzy+Logic+with+Engineering+Applications%2C+3rd+Edition-p-9780470743768

  19. [19] Nguyen, H. X., Nguyen, A. T., Ngo, A. T., Phan, V. T., Nguyen, T. D., Do, V. T., ... & Hens, L. (2020). A hybrid approach using GIS-based fuzzy AHP-TOPSIS assessing flood hazards along the south-central coast of Vietnam. Applied sciences, 10(20), 7142. https://doi.org/10.3390/app10207142

  20. [20] Truong, P. M., Le, N. H., Hoang, T. H. D., Nguyen, T. K. T., Nguyen, T. D., Kieu, T. K., ... & Tran, T. A. (2023). Climate change vulnerability assessment using GIS and fuzzy AHP on an indicator-based approach. International journal of geoinformatics, 19(2), 39–53. https://doi.org/10.52939/ijg.v19i2.2565

  21. [21] Taherdoost, H., & Madanchian, M. (2023). Artificial intelligence and knowledge management: Impacts, benefits, and implementation. Computers, 12(4), 72. https://doi.org/10.3390/computers12040072

  22. [22] Guerra, M. I. S., de Araújo, F. M. U., De Carvalho Neto, J. T., & Vieira, R. G. (2024). Survey on adaptative neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. Energy systems, 15(2), 505–541. https://doi.org/10.1007/s12667-022-00513-8

  23. [23] Karaboga, D., & Kaya, E. (2019). Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey. Artificial intelligence review, 52, 2263–2293. https://doi.org/10.1007/s10462-017-9610-2

  24. [24] Vargas, O. S., Aldaco, S. E. D. L., Alquicira, J. A., Vela-Valdés, L. G., & Núñez, A. R. L. (2023). Adaptive network-based fuzzy inference system (ANFIS) applied to inverters: A survey. IEEE transactions on power electronics, 39(1), 869–884. https://doi.org/10.1109/TPEL.2023.3327014

  25. [25] Sathiyamurthi, S., Youssef, Y. M., Gobi, R., Ravi, A., Alarifi, N., Sivasakthi, M., ... & Saqr, A. M. (2025). Optimal land selection for agricultural purposes using hybrid geographic information system-fuzzy analytic hierarchy process-geostatistical approach in Attur Taluk, India: Synergies and trade-offs among sustainable development goals. Sustainability, 17(3), 809. https://doi.org/10.3390/su17030809

Published

2025-09-17

How to Cite

Ayedh, M., & Ali, W. (2025). An AI- and fuzzy-logic-based framework for climate change adaptation and environmental resilience in Yemen. Uncertainty Discourse and Applications, 2(3), 245-257. https://doi.org/10.48313/uda.v2i3.80

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.